.
|-,

O JMH’ﬂ‘ ff’;___-
UNNT- 2 g
[OR) DUAL OPERATIONS OF 05 [OR]
USER MODE AND KERNEL MODE

Operating Systems have two basic modes in which they can execule a
certain program - User Mode and Kernel Mode.

The Processor (CPU) switches between these two modes.

Applications run in user mode , and core OS components run in kemel mode
These modes define standardised instructions for deciding what resources can be
accessed.

The dual mode protect data and provide system securnity.

USER MODE:

It has restricted access to the resources.

CPU has restnctions , therefore it can have only access (o Hmned instructions and
memory.

Utlity applications such as text editors, media players are run in the user mode
User mode does not have direct access to the computer hardware.

The mode bit of user mode is *1”.

When an application or program is executed, its initial state and operation mode

are loaded on stack. At this point, Processor starts executing the program in this
mode.

For perfroming hardware related tasks or whether the user w mqueu for
a service from the OS, or if any interrrupt occurs — the system must switch o
kernel mode. CPU (processor) do the esssential tasks by stroning t mm:
of the user program to stack again. After completing it, CPU resumes the program
where it left. -

KERNFEL MODE:
Kernel mode also called as Enpnrwhll'

This mode has full access to memony
can execute anymmmmd
The core functionalities of t} alwe

Th:pmmhmeﬂﬂlrw

storage media.
xmmhm
Eﬂlﬂﬂl&

'|.I 1'
-"). o -1- % i :
iy i = & B A B i L [=
d 1 ¥ - N s vl Bl
. - 1= i e -
iy Bp. e e i f ¥ —

n |Eﬁ"'ri!f' =

1

L/

e .,¥. J
o \

RN
i { an om%in_g%ystfmv The kernel is the lirst progr
/ﬁliclit; Tﬁﬁﬁ?ﬁiﬂ;der whenever we start a system. The Kernel is presen,
iﬁl:mtmm until the Operating System 13 shut-dnwnh- B e kg iz
. : user and the hardwart A

Kergn! wﬁ a.n:m: Et:gﬂﬂ;i:ﬂuii to the Kernel, then it 1s called System Call.
L 1 | : System

. d core of an Operating System
ter program that is the heart an - 30 has
;ﬁl::cmteliemoapﬁ:ntjiug S}I:ttm has control over the system 30, the h?rncgaj:lpmr:ﬂ
ntrol aver everything in the system. It is the most important part ol an pl i{:r_i
;ﬂ em. Whenever a system starts, the Kernel is the first program that is DTI o
af{:!r the bootloader because the Kernel has to handle the rest of the thing ol the

system for the Operating System.

-~ Functions of Kerenl:
Access Computer Resource - A Kernel accesses various computer resources hike
the CPU, 1/0 devices and other resources. Kernel is present in between the user and
the resources of the system to establish the communication.

Resource Management - Kernel shares the resources between various processes
in a way that there is uniform access to the resources by every process.

Management - r management 1s done by the kernel

-

bemuuwmptﬁm--}__ y 8] -memory has to be allocated
_ Device Management - The allocation of peripheral devices connected in the system

S increased and at the
et —-":Sa 1 st ithic

o] st

. age of microk :
Space separately. crnel is

execution time.
A7 | Hybrid Kernel

Ltf 1t5h thlf#[cam‘hir‘xaﬁun of both Monolithic Kernel and Microkernel. It uses the speed
€ Monolithic Kernel and the modularity of Microkernel.

Hybrid kernels are micro kernels having some non-essential code in kernel-space in
UT‘-'JE;‘ for lthe code to run more quickly than it would be in user-space. So, some
services like network stack or file systems are run in Kernel space to reduce the
periormance overhead, but still, it runs kernel code as servers in the user-space.

raddad

System Calls
A system call is a mechanism that provides the interface between a process and the
operating system. It is a programmatic method in which a computer program
requests a service from the kernel of the OS.
System call offers the services of the operating system to the user programs via APl
(Application Programming Interface). System calls are the only entry points for the
kernel system.
A system call is a way for a user program to interface with the operating system. The
program requests several services, and the OS responds by invoking a series of
system calls to satisfy the request. System calls are predefined functions that the
operating system may directly invoke if a high-level language is used.
The Application Program Interface (API)connects the operating system's
functions to user programs. It acts as a link between the operating system and a
process, allowing user-level programs to request operating system services. The
kernel system can only be accessed using system calls. System calls are required for
any programs that use resources.
The interface between a process and an operating system is provided by system calls.
System calls are usually made when a process in user mode requires access to a
resource. Then it requests the kernel to provide the resource via a system call.

So, th Ehat_ here we are using User Space and Kernel
» 1€ communication between these can reduce the overall

LUETER MODE
Uiss Procass Gels Lyiilem
+ Exezuting Call
I
|

S TTTme e A e e RS P

A=L"

Waa s o | - s5 creation, process
These system calls are responsible for file manipulation such as creating a file,
file, writing into a file etc.
These system calls are responsible for device manipulation such as reading from device
buffers, writing into device buffers etc.

‘ : . -
These system calls handle information and its transfer between the operating system and
the user program.
C s
These system calls are
and dE‘]EﬁDE a commu

Some of the exam

useful for interprocess communication. They also deal with creating
nication connection,

ples of all the above types of system calls in Windows and Unix are given
as follows -
Types of System
Calls Windows Linux
?mcH!lCunhﬁl Cmﬂt#Fmtnu{}E:i!ch-H:l[]Wn]lFurSln_ginﬂb]ic!{] fork()exit Ywall()
File
Manogemant CrumaFlrn[‘}H{-udHIn[}Wrﬁl&Hiu{iC1n:nHundlr{} open(read(jwdle{)close()
Device
Management E.utC::mmh:Mmda{}ieud{:nruﬂ{p[]Iu'uruim-cunmiu{} loci(Jread{)write()
infermalion -
Mointenance umu-xmt-nl!'-‘rﬂCEH!G[]S-&!TEM{!I[]SME;;.[] nnrpld{}dnnn[jﬂﬂp[]
=ommunicalion] CreatePipe()CreatefileMapping(IMapViewOlFie() pipe()shmgel)mmapl
LA SRR R

D5
stem Programs
System programs provide a convenient environment for program development and
execution. The can be divided into:
¢ File manipulation
Status information
File modification

Programming language support
Program loading and execution
Communitations

¢ Applhcation programs
Most users’ view of the operation system is defined by system programs, not the
actual system calls. System Programs provide a convenient environment for program
development and execution. Some of them are simply user interfaces to system calls;
others are considerably more complex.
a. File management - Create, delete, copy, rename, print, dump, list, and
generally manipulate files and directories

b. Status information: Some ask the system for info - date, time, amount of |
available memory, disk space, number of users. Others provide detailed
performance, logging, and debugging information.

i
= - e L e g J

.o o S D

rmation

to Eﬂarchdu:‘;unm Text editors to create and modify files, Special commands
€nts of files or perform transformations of the text.

d. Prmmmin‘
interpreters snm;:;g:;h - Compilers, assemblers, debuggers and

€. Program
ani’; E::?t:?:n:n znd tmtiqm- Absolute loaders, relocatable loaders,
f machiae] angu’ag : overlay-loaders, debugging systems for higher-level and
mn'::“niﬂatiunu - Provide the mechanism for creating virtual connections
R 5 pmcﬂﬂﬂ?fi, users, and computer systems. Allow users to send messages
: one another’s screens, browse web pages, send electronic-mail messages,
0g in remotely, transfer files from one machine to annthei)

T

System View of the Process and Resources

Svstem View:

The OS may also be viewed as just a resource allocator. A computer system
comprises various sources, such as hardware and software, which must be managed
effectively. The operating system manages the resources decides between competing
demands, controls the program execution, etc. According to this point of view, the
operating system's purpose is to maximize performance. The operating system is
responsible for managing hardware resources and allocating them to programs and
users to ensure maximum performance.

The hardware interacts with the operating system than with the user from a system
viewpoint. The hardware and the operating system interact for a variety of reasons,
mncluding:

Resource Allocation:

The hardware contains several résources like registers, caches, RAM, ROM, CPUs,
1/0 interaction, etc. These are 411 resources that the operating system needs when
an application program demands them. Only the operating system can allocate
resources. and it has used several tactics and strategies to maximize itS processing
and memory space, The operating system uses a variety of strategies to get the most
out of the hardware resources, including paging, virtual memory, caching, and so
on. These are very important in the case of various user viewpoints because
inefficient resource allocation may affect the user viewpoint, causing the user system
to lag or hang, reducing the user experience.

Control Program:

The control program controls how input and output devices (hardware) interact with
the operating system. The user may request an action that can only be done with
1/O devices; 1n this case, the operating system must also have proper
communication, control, detect, and handle such devices.

TT A SR

Process Abstraction

Abstractions provide an interface to application programmers that

separate policy—what the interface commits to accomplishing—from mechanism—
how the interface is implemented.

e \ £

L. Example Abstraction: File
What undesirable properties do file systems hide?

« Disks are slow!
« Chunks of storage are actually distributed all over the disk. }
« Disk storage may faill

What new capabilities do files add?

« Growth and shrinking.
» Organization into directories.
What information do files help organize?

« Ownership and permissions.
« Access time, modification time, type, etc,

2. Preview of Coming Abstractions
« Threads abstract the CPU.,

« Address spaces abstract memory.
« Files abstract the disk

« We will retumn to these abstractions. We are starting with an organizing principle.

3. The Process:
Processes are the most fundamental operating system abstraction.

« Processes organize information about other abstractions and represent a single thing
that the computer is "doing.”

= YOu Know processes as appllication)s

4. Organiziong Information:

Unlike threads, address spaces and files, processes are not tied to a hardware
component. Instead, they contain other abstractions,

Processes conlain;

« one or more threads,
« an address space, and
« zero or more open file handles representing files

R

Process Hierarchy

Now-a-days all general purpose operating systems permit a user to create and
destroy processes. A process can create several new processes during its time of
execution.

The creating process is called the Parent Process and the new process is called Child
Process,

4

s Tollone & parent process terminates the execution of one of its children are i

« The child proce

Because of this there should be some mechanism which allows the parent :
Process to inspect the state of its children process. | :i

The task that is assigned to the child process is no longer required.

8s has exceeded its usage of resources that have been allocated.

Let us discuss this with an example

h}: unix this is done by the 'Fork' system call, which creates a 'child' process and
the ‘exat system call', which terminates current process.

pEs ad o

.I;.h ;__._ o I=Re . o.EAf
& & - fama G,
{-y s o
f s pa s, X

The root of tree is a special process created by the operating system during

startup
A process can choose to wait for children to terminate.
Example C issued a wait]) system call it would block until G-Finished.

& & & &

—THREADS
A thread is referred as a light-weight process, also called mini-process.
A traditional process (heavy-weight process) has a “single-thread” of control.
Most modern operating systems provide features which enable a process that
should contain “Multiple-threads of control”.
If a process consists of one or more threads of control, it can perform more
than one task at a time.
Threads share the same address space and global variables of a process to
which they belongs. Also all the threads of a process share the code section,
data section and OS resources.
A thread contains a thread ID, a program counter, a register set and a stack.
Threads are a popular way to improve application performance.
Thread is equivalent to a classical process.
Each thread belongs to exactly one process, and no thread can exist outside a
process.
Each thread represents a separate flow of control.

« Threads have been successfully used in implementing network Servery

web server. _ _ |
+ For example: a web browser might have one thread to display images, another thread forh&
and another thread retrieves data from the network etc.

The following figure shows the working of a single-threaded and a multithreadeqd
process.

data || files code || dala tes o

Stack registars ||| registars {mginmm
| o | | MaSedattoe®
stnck siack | alack
;

s ; g g

single-threaded process

= hrasncd

multithreaded process

/ﬁc{rantages of Thread:

1. Responsiveness: If the process is divided into multiple threads, if one thread
completes its execution, then its output can be immediately returned.

2. Faster context switch: Context switch time between threads is lower compared to
Process context switch, Process context switching requires more overhead from the
CPU.

3._Effective utilization of multiprocessor gystem: Il we have multiple threads in a
single process, then we can schedule multiple threads on multiple processors, This
will make process execution faster.

4. Resource gharing: Resources like code, data, and files can be shared among all
threads within a process.

Note: stack and registers can't be shared among the threads. Each thread has its
own stack and registers.

5. Communieation: Communication between multiple threads is easier, as the
threads shares common address space. While in process we have to follow some

specific communication tech nique for communication between two process.

6. Enhanced throughput of the system: If a process is divided into multiple threads,

and each thread function is considered as one job, then the number of jobs

completed per unit of time is increased, thus increasing the throughput of the
system.

[

i

fork() and
i n : :m[tl:(] System Calls
2lganal Handling

Signal Han

« Thread p
« Ihread Specific Dat

1.5 :

The fork() and exec() are the system calls. The fork() call creates a duplicate process
of the process that invokes fork(). The new duplicate process is called child process
and process invoking the fork() is called the parent process. Both the parent process
and the child process continue their execution from the instruction that is just after

the fork(). :
Let us now discuss the issue with the fork() system call. Consider that a thread o

the multithreaded program has invoked the fork(). So, the f!::rkﬂ would malﬂt:;ﬂ
duplicate process. Here the issue is whether the new duplicate process crea by

fork() will duplicate all the threads of the parent process or the duplicate process

would be single-threaded. "
Well, there are two versions of fork() in some of the UNIX systems. Either the fork()
can duplicate all the threads of the parent process in the child process or the forkl)
would only duplicate that thread from parent process that has mvul_aced 1t.

Which version of fork{) must be used totally depends upon the application. _
Next svstem call i.e. exec{) system call when invoked replaces the program along with

all its threads with the program that is specified in the parameter to exec(). Typically

the exec() system call is lined up after the fork() system call.
Here the issue is if the exec() system call is lined up just after the fork() system call

then duplicating all the threads of parent process in the child process by fork() is
useless. As the exec() system call will replace the entire process with the process
provided to exec() in the parameter, . |

In such case, the version of fork() that duplicates only the thread that invoked the
fork() would be appropriate.

2. Thread canceligtion:
Termination of the thread in the middle of its execution it is termed as ‘thread

cancellation’. Let us understand this with the help of an example. Consider that
there is a multithreaded program which has let its multiple threads to search
through a database for some information. However, if one of the thread returns with

the desired result the remaining threads will be cancelled.
Now a thread which we want to cancel is termed as target thread. Thread

cancellation can be performed in two ways:
Asynchronous Cancellation: In asynchronous cancellation, a thread is employed

to terminate the target thread instantly.
Deferred Cancellation: In deferred cancellation, the target thread is scheduled to
check itself at regular interval whether it can terminate itself or not.

The issue related to the target threads are listed below:

¢ P&

. What if the resources had been allotted to the cancel target ﬂmﬁmh‘ |
. Whiiiifthetargﬂthrﬂdiﬂzmiﬁaﬁﬂwhmitmupdanng 1t w,
‘sharing with some other thread. - 0
» Here the asynchromous cancellation of the thread where a threag
immediately cancels the target thread without checking whether it is holding 1
any resources or not creates troublesome. : T
- However, in deferred cancellation, the thread that indicates the target thread
about the cancellation, the target thread crosschecks its flag in order to
confirm that it should it be cancelled immediately or not.
3, : .
Signal handling is more convenient in the single-threaded program as the signal
would be directly forwarded to the process. But when it comes to multithreaded

program, the issue arrives to which thread of the program the signal should be
delivered.

Generally, signal is used in UNIX systems to notify a process that a particular event
has occurred. A signal received either synchronously or asynchronously, based on
the source of and the reason for the event being signalled.

In UNIX systems, a signal is used to notify a process that a particular event has
happened. Based on the source of the signal, signal handling can be categorized as:
Asynchronous Signal: The signal which is generated outside the process which
receives it.

Synchronous Signal: The signal which is generated and delivered in the same
process.

All signals, whether synchronous or asynchronous, follow the same pattern as given
below —

A signal is generated by the occurrence of a particular event.
The signal is delivered to a process.
Once delivered, the signal must be handled.

4. Thread Pool:

When a user requests for a webpage to the server, the server creates a separate
thread to service the request. Although the server also has some potential issues.
Consider if we do not have a bound on the number of actives thread in a system
and would create a new thread for every new request then it would finally result in
exhaustion of system resources.

The solution to this issue is the thread pool. The idea is to create a finite amount
of threads when the process starts. This collection of threads is referred to as the
thread pool. The threads stay in the thread pool and wait till they are assigned any
request to be serviced.

Whenever the request arrives at the server, it invokes a thread from the pool and

assigns it the request to be serviced. The thread completes its service and return
back to the pool and wait for the next request.

5. Thread-Specific data:
We all are aware of the fact that the threads belonging to the same process share the
data of that process. Here the issue is what if each particular thread of the

needs its own copy of data. So the specific data associated with the specific thread

1s referred to as thread-specific data.

Consider a tr : _ |

a different m:f;?;un; Processing system, here we can process each transaction in

identifier with jt w;: ‘Celermine each transaction uniguely we will associate a unique

As we are servici 'ch Will help the system to identify each transaction uniquely.

specific dat cng €ach transaction in a separate thread. So we can use thread-
. 414 to associate each thread to a specific transaction and its unique id.

b oEREEE e

-

e ~ Thread Libraries _

= read Libraries has a collection of functions that useful in creating and controlling
threads. Programmers can access these thread' libraries using an application

Programming interface (API). Thread libraries can be the user level library or kernel
level library,

A thread library provides the programmer an API for creating and managing threads.
There are two primary ways of implementing a thread library. The first approach is
to provide a library entirely in user space with no kernel support. All code and data
structures for the library exist in user space. This means that invoking a function in
the library results in a local function call in user space and not a system call.
The second approach is to implement a kernel-level library supported directly by the
operating system. In this case, code and data structures for the library exist in kernel
space. Invoking a function in the API for the library typically results in a system call
to the kermnel.
Three main thread libranies are in use today:

¢ POSIX Pthreads,

s Win32 Library

+ Java Library

Pthread Library:
Pthreads are also termed as POSIX thread library. This can be implemented either

at the userspace or at the kernel space. Pthreads library is often implemented at
LINUX, UNIX, Solaris, Mac OSX, The Pthread program must always have
a pthread.h header file.
ﬂiﬂ:g Lihl’ﬂ!!:
Creation of thread in Win2 library is similar to pthread library. To create a thread
using the Win32 library always include windows.h header file in the program. The
Win32 thread library is a kemel-levellibrary which means invoking the Win32
library function results in a system call.
Java Thre br
» You must have seen that mostly the java virtual machine JVM runs on the top
of the host operating system. That's why java threads are created and
controlled by using the available library at the host operating system.
» Therefore, in the Windows operating system, the java threads are implemented

using Win32 API and in operating systems such as Linux and UNIX, the java
thread is implemented using Pthread library.

.

PROCESS

» Process is a program in execution.
* A process is a unit of work in a system, . .
A computer system consists of a collection of processes, they are “operating

System-processes® which execute systems code and "user processes” which
execute user code.

A compiler, word pProcessing program, web browser, sending output to a printer is
the examples for a process.

5> TRU EOFAP 255 IN MEMOR

STACK

v

HEAP
DATA
TEXT

——

Stack: It contains temporary data such as local variables, function parameters and
return addresses.

Heap: It is a memory dynamically allocated during process runtime.
c. DataSection: It contains global variables.
Text Section: The program code of a process,

lllll

PROCESS STATE

s =N T
[] acdmitted inlefr j
L naw S upt exit mrmmmeﬂ)
g S /—\ o
o S P i

ready)

(\
. funning)

e, _#
-9} \J =

. scheduler dispaich :
O or event completion = _._._,P' V0 or event wait
- "o,

waitin)
9 §

i —

Diagram of a Process State

As a process executes, it changes states. The state of a

process is defined by the
current activity of that process. Each process may be in o

ne of the following states:
a) New: If the process is in the new state, it means that the

process is being
created. In this case only memory is allocated, but not CPU,

e

y

b) Ready: A process is said to be ready if it is waiting to be assigned to a processor
(CPU), so that it could use a CPU. In ready state the program is waiting for
CPU in ready queue (Ready list) .The assignment of the CPU to the first process
on the ready list is called “Dispatching”.

c) Running: A process is said to be running if it is has the CPU (processor] and the
instructions are being executed.
d) Waiting: A process is said to be waiting 1if it is waiting for an event to occur,

such as an 1/0 completion. Until the event is completed, the process cannot
proceed further.

e) Terminated: If a process enters the terminated state, it means that the process
has finished execution of its tasks (jobs).

iiiiii

PROCESS CONTROL BLOCK [PCB]

Process State

Program Counter

Register Contents

Memory Limits
CPLU Utilization
List of Open Files
PCB Pointer

A PCB is a data block or record containing many pieces (parts) of information associated
with a specific process.

Each process is represented in the operating system by its own control block (PCB).
Each user process has a PCB which is created when a user creates a process and it is
removed from the system when the process is terminated (killed).
The PCB gives information about the status of the job (process).
. Process State: The process state represents the current state of the process, which may

be any of new, ready, running, waiting and terminated. The process may be in any of the
above five states, and depending on the process state, PCB is updated.

2 Program Counter: Program counter indicates address of the next instruction to be
executed. When a process goes to CPU burst (activity), the CPU (processor) has to know
what instruction is to be executed. This is given by "program counter” in PCB.

3 CPURegisters: Contents of various registers such accumulator registers, index registers,
general purpose registers are stored in PCB. When the process goes to I/O burst from
CPU burst, it may so happen that the contents of these registers may be changed. When
a process comes back fo the CPU burst, the PCB contents must be restored.

4. Memory Limils: The information stored here is recording "Memory management”, it
depends on the memory system used by OS.

e e T e i ey T, i e T B . T - i ‘—'M

6. ﬂﬂ_ﬂ[ﬂﬂeﬂ—ﬁm
pen files.

pruusi.nndulis_fufn =,
/EE@EEWQ

and I/0 wait. Process

i« followed by another
ds with a system

- | r :
Process execution consists 0
execution begins with CPU bur
CPU burst then another 1/0 burst, a

request to ferminate the execution,

CPU scheduler:-
The CPU scheduler selec
ready to execute and allocates the CPU to that pr

* SHORT-TERM SCHEDULER".
Context switcn :-
s to save the "current context’ of the process which

When an interrupt occurs, the system need
ted in the PCB of the process. Switching

is currently running on the CPU. The context is represen
f the current process and “state

the CPU to another process requires per forming a “state save’ o
cese This task is known as a "CONTEXT SWITCH". When a confext
its PCB, and loads the

f a cycle of CPU execution ke
<t that is followed by an 1/0 burst, whi¢
nd so on. Finally the last CPU purst en

queue) in memory that are
known as

(ready

ts a process from the processes
The CPU scheduler also

OCESS.

restore” of a different pro
switch occurs, the kernel (OS) saves the confext of the old process in

*saved context” of the new process.

Dispatcher:-

The dispatcher is a module (program) that gives control of the
the CPU scheduler. The dispatcher should be as fast as possible, since it is invoked during every

CPU to the process selected by

process switch.
- Schedulers [or] Types of Schedulers
Scheduling is fundamental function of an Operating System, There are three types of

schedulers:
1. LONG -TERM SCHEDULERS (LTS) or JOB SCHEDULER: LTS determines which jobs are

udr_niﬁad to the system for processing. It is a program that loads the selected jobs i
main memory. These jobs are put info a “ready queue”. Only a limited numb 5% jn‘h
(processes) allowed in the ready queue by LTS, SHiok:its
2. SHORT-TERM SCHEDULERS
= pmcess.r'jub?:u:n ﬂE 1[:T5:-} or CPU SCHEDULER: It is a program that is select
AR m ng :a ready processes” (ready queue), and allocating the CPU
process. It decides which process is to be dispatched next for execution, Th
. The

STS s called more fre
quently. For example: 3
SVery el ple: In UNIX OS, the STS is called once for

gy lEBM_SQ_jMR H (MTS): At one stage, the CPU utilization is maximum for

;ﬁ::f:'ﬂ "”"‘b'_”' “_*f ST programs in memory. At this stage, if the degree of
: Piﬂgr'ﬂmmmg 's further increased, CPU utilization drops. In this situation OS5
rrf'lmedm'rely calls MTS. The MTS will swap excess programs from memory and puts on
disk. It means MTS performs *SWAP-OUT". After sometime, when some programs leave
FTE"“'"“"“E) memory, MTS will *SWAP-IN" those programs which were swapped out back
e memory and execution starts. Thus SWAP-OUT and SWAP-IN should be done at
appropriate time by MTS,

!!!!!!

PREEMPTIVE SCHEDULING V/S NON-PREEMPTIVE SCHEDULING
CPU scheduling decisions may take place under the following for circumstances:

1. When a process switches from the running state to the waiting state (for example: I/0
request).

2. When a process switches from the running state to the ready state (for example: when
an interrupt occurs),

3. When a process switches from the waiting state to the ready state (for example:
completion of I/0).

4. When a process terminates.

When scheduling takes place only under the circumstances 1 & 4, we say the scheduling scheme
is "Non-Preemptive” (Cooperative), otherwise it is "Preemptive”.

Um:-i;' Non-Preemptive scheduling, once the CPU has been allocated to a process, the process
keeps the CPU until it releases the CPU either by terminating or by switching to the waiting
<tate This scheduling method is used by "Microsoft Windows Operating System”.

e
_~SCHEDULING ALGORITHMS [or]

\ M
t@w&f}? CPU SCHEDULING ALGORITHMS

CPU scheduling deals with the problem of deciding which of the process in the
ready queue is to be allocated to the CPU.
There are.different CPU scheduling algorithms

1. FIRST-COME FIRST-SERVED SCHEDULING: (FCFS)

_FCFS is the simplest algorithm. In FCFS, the process that requests the CPU first is
allocated to the CPU first. It is easily managed with FIFO (First In First Out) queue.
When the CPU is free, the CPU is allocated to the process at the head of the queue.
The running process is then removed from the queue. Consider the following set of
processes along with the length of the CPU burst given in milliseconds (ms).

Process | niiseconds)
P1 24
P2
P3 3

If the processes arrive in the order P1, P2, and P3 we get the result shoy,
following Gantt chart.

Pl P2 P3

0 24 27 30
Waiting time for process P1 = 0 milliseconds.
Waiting time for process P2 = 24 milliseconds.
Waiting time for process P3 = 27 milliseconds. o .
Average waiting time = processl waiting time + process 2 waiting time +
Total number of processes
= 0+24+27
3
=351/3

= 17 milliseconds.

Suppose if the processes arrive in the order P2, P3, P1 then we get the following
Gantt chart,

GANTT CHART:

P2 P3 Pl
0 3 6 30
Waiting time for process P1 = 6 ms

Waiting time for process P2 = 0 ms
Waiting time for process P3 = 3 ms

Average waiting time = processl waiting time + process 2 waiting time +
Total number of processes
=5+0+3

3

=9/3
= 3 milliseconds.
The "FCFS scheduling algorithm is non-preemptive”, it means once the CPU
has been allocated to a process, that process keeps the CPU until it releases the
CPU ejther by terminating or by requesting /0.
2. SHORTEST-JOB FIRST SCHEDULING: (SIF)

This algorithm schedules the processes by their CPU burst times. The process with
the smallest CPU burst time will be processed before other processes. The CPU is
assigned to the process that has the “smallest next CPU burst”. Suppose if two

processes have the same burst times then they will be scheduled through FCFS.
Consider the following set of processes with the length

of CPU burst given in
milliseconds.
it e E:s.lrst Time
(milliseconds)
Pl 5]

P2 8
P3 7
P4 3

| sing the SJF schedulin

TCiine gwe would get the following Gantt chart.

P4 P1 P3 P2

& W L] ﬂ 3
Waiting time for process Pl = 3 ms 3 *0 4

Waiu:ng t::m_;e for process P2 = 16 ms
Wa{t:gng time for process P3 =g ms
Waiting time for process P4 = 0 ms

Average waiting time = process1 waiting time + process 2 waiting time +

o Total number of pro
Average waling time = 3+16+9+0 sl

4
= 28/4
. . =7 ms.
This algorithm gives the minimum average waiting time for given set of processes.
The SJF al_gnnthm may be either preemptive or non-preemptive. When a new
Process armives at the ready queue while the previous process is still executing. The
New process may have a shorter CPU burst than what i left of the currently
€xecuting process, a “Non-preemptive SJF algorithm” will allow the currently
running process to finish its CPU burst, whereas “Preemptive SJF algorithm” will
preempt (prevent) the currently executive process
_3-PRIORITY SCHEDULING:

A priority 1s associated with each process. The CPU is allocated to the process with
the highest priority. The equal priority processes are scheduled in FCFS order.
Priorities are generally indicated by fixed range of numbers such as 0-7 or 0-4095.
Some systems use low number to represent high priority; others use low number for
low priority.

Assume that here we use low number to represent high priority.

Consider the following set of processes arrived in the order P1. P2, P3, P4 and P5
with the length of CPU burst and associated priorities:

Burst

Process Time Priority .
Pl 10 g
P2 1 1 _—1—* HIGHPRIORITY
P3 2 3
P4 | 4
PO =) 2

Using priority scheduling, the following Gantt chart is obtained.
GANTT CHART:

P2 [ps | P1 | P3 | P4

0 O 16 18 19
Waiting time of process P1 = 6 ms
Waiting time of process P2 = 0 ms
Waiting time of process P3 = 16 ms
Waiting time of process P4 = 18 ms
Waiting time of process PS5 = | g

waitine time = processl waiting time *+ Drocess < Walll 3
Average waiting time = proce ko imbar of proceAses
Average waiting time = 6+0+16+18+1
S

=41/5

s tive. When a .
Priority scheduling can be either Preemptive or Non-preemptive. Ui procesy
arrives at the ready queue, its priority is compared with the prionty of the currently
running process. A “preemptive priority .lcheduling" algorithm will Prc‘tmp; the
CPU if the priority of the newly arrived process is higher than the priority of the
currently running process. A “Non-preemptive priority scheduling” algorithm will
simply put the new process at the head of the ready queue.

4. ROUND-ROBIN SCHEDULING: [R-R] , 3

T -R scheduling algorithm is designed especially for “Time Sharning St{sfﬂms i {
1s a similar to FCFS scheduling but preemption is added. A small unit of time called
“Time Quantum” or “Time Slice” is defined. The ready queue is treated as a
“Circular queue”. |
The new processes are added to the tail (end) of the ready queue. A Quantum of time
is generally given in milliseconds. The CPU scheduler picks the first process from

the ready queue, sets a timer to interrupt after “ITime Quantum” and dispatches
the process. Here one of two things will then happen:

- The process may have a CPU burst of less than (<) 1time Quantum. In this
case the process itself will release the CPU voluntarily. The scheduler will then
proceeds to the next process in the ready queue.

» Otherwise if the CPU burst of the currently running processes is larger than
(z) ltime Quantum, the timer will go off and will cause as interrupt to the
operating system. A context switch will be executed and the process will be put

at the tail of the ready queue. The CPU scheduler will then select the next
process in the ready queue.

Consider the following set of processes that arrive at a time 0 (zero) with the length
of the CPU burst given in milliseconds.

Process B}u.‘at e
(milliseconds)
Pl 24
P2
P3 3

Suppose we use a time quantum of “4ms”, then process Pl gets the first for 4ms,
since it requires another 20 ms, it is preempted after the first time quantum, and
the CPU 1s given to the next process in the queue i.e. P2. Since P2 does not need
4ms, it quits before its time quantum expire. The CPU is given to the next process
1.e. P3. Once each process has received the “1 Time Quantum?”, the CPU is returned
to process Pl for an additional time quantum.

e

. i - . B - - . N - h r b il £ Py R 8 = o i " . e - - L} -
: b . ! P ok] i L] ; =Pt

v ¥ 3 " . J

S

-

ORITHM

L

A

|) 7
= l...|.-._-.,.. 1...\._u...__ .- .___"..-.
st ol P AFD PRy o =
Ly O Dl ¥ e I-u...%___..a

e
-

o
3 iz

s for 6

Pl wait

